3,759 research outputs found

    Change detection in categorical evolving data streams

    Get PDF
    Detecting change in evolving data streams is a central issue for accurate adaptive learning. In real world applications, data streams have categorical features, and changes induced in the data distribution of these categorical features have not been considered extensively so far. Previous work on change detection focused on detecting changes in the accuracy of the learners, but without considering changes in the data distribution. To cope with these issues, we propose a new unsupervised change detection method, called CDCStream (Change Detection in Categorical Data Streams), well suited for categorical data streams. The proposed method is able to detect changes in a batch incremental scenario. It is based on the two following characteristics: (i) a summarization strategy is proposed to compress the actual batch by extracting a descriptive summary and (ii) a new segmentation algorithm is proposed to highlight changes and issue warnings for a data stream. To evaluate our proposal we employ it in a learning task over real world data and we compare its results with state of the art methods. We also report qualitative evaluation in order to show the behavior of CDCStream

    Superstrings and Topological Strings at Large N

    Get PDF
    We embed the large N Chern-Simons/topological string duality in ordinary superstrings. This corresponds to a large NN duality between generalized gauge systems with N=1 supersymmetry in 4 dimensions and superstrings propagating on non-compact Calabi-Yau manifolds with certain fluxes turned on. We also show that in a particular limit of the N=1 gauge theory system, certain superpotential terms in the N=1 system (including deformations if spacetime is non-commutative) are captured to all orders in 1/N by the amplitudes of non-critical bosonic strings propagating on a circle with self-dual radius. We also consider D-brane/anti-D-brane system wrapped over vanishing cycles of compact Calabi-Yau manifolds and argue that at large NN they induce a shift in the background to a topologically distinct Calabi-Yau, which we identify as the ground state system of the Brane/anti-Brane system.Comment: 30 pages, some minor clarifications adde

    Universal aspects of string propagation on curved backgrounds

    Get PDF
    String propagation on D-dimensional curved backgrounds with Lorentzian signature is formulated as a geometrical problem of embedding surfaces. When the spatial part of the background corresponds to a general WZW model for a compact group, the classical dynamics of the physical degrees of freedom is governed by the coset conformal field theory SO(D-1)/SO(D-2), which is universal irrespective of the particular WZW model. The same holds for string propagation on D-dimensional flat space. The integration of the corresponding Gauss-Codazzi equations requires the introduction of (non-Abelian) parafermions in differential geometry.Comment: 15 pages, latex. Typo in Eq. (2.12) is corrected. Version to be published in Phys. Rev.

    Three-Dimensional Gravity and String Ghosts

    Full text link
    It is known that much of the structure of string theory can be derived from three-dimensional topological field theory and gravity. We show here that, at least for simple topologies, the string diffeomorphism ghosts can also be explained in terms of three-dimensional physics.Comment: 6 page

    End-users publishing structured information on the web: an observational study of what, why, and how

    Get PDF
    End-users are accustomed to filtering and browsing styled collections of data on professional web sites, but they have few ways to create and publish such information architectures for themselves. This paper presents a full-lifecycle analysis of the Exhibit framework - an end-user tool which provides such functionality - to understand the needs, capabilities, and practices of this class of users. We include interviews, as well as analysis of over 1,800 visualizations and 200,000 web interactions with these visualizations. Our analysis reveals important findings about this user population which generalize to the task of providing better end-user structured content publication tools.Intel Science & Technology Center for Big Dat

    SU(2) Skyrme Vortices

    Get PDF
    A regular method for constructing vortex-like solutions with cylindrical symmetry to the equations of the SU(2) Skyrme chiral model is proposed. A numerical estimate for the length density of mass is given

    On zero modes of the eleven dimensional superstring

    Get PDF
    It is shown that recently pointed out by Berkovits on-shell degrees of freedom of the D=11 superstring do not make contributions into the quantum states spectrum of the theory. As a consequence, the spectrum coincides with that of the D=10 type IIA superstring.Comment: 7 pages, LaTex fil

    A lattice study of the two-dimensional Wess Zumino model

    Get PDF
    We present results from a numerical simulation of the two-dimensional Euclidean Wess-Zumino model. In the continuum the theory possesses N=1 supersymmetry. The lattice model we employ was analyzed by Golterman and Petcher in \cite{susy} where a perturbative proof was given that the continuum supersymmetric Ward identities are recovered without finite tuning in the limit of vanishing lattice spacing. Our simulations demonstrate the existence of important non-perturbative effects in finite volumes which modify these conclusions. It appears that in certain regions of parameter space the vacuum state can contain solitons corresponding to field configurations which interpolate between different classical vacua. In the background of these solitons supersymmetry is partially broken and a light fermion mode is observed. At fixed coupling the critical mass separating phases of broken and unbroken supersymmetry appears to be volume dependent. We discuss the implications of our results for continuum supersymmetry breaking.Comment: 32 pages, 12 figure

    Conformally Exact Metric and Dilaton in String Theory on Curved Spacetime

    Full text link
    Using a Hamiltonian approach to gauged WZW models, we present a general method for computing the conformally exact metric and dilaton, to all orders in the 1/k1/k expansion, for any bosonic, heterotic, or type-II superstring model based on a coset G/HG/H. We prove the following relations: (i) For type-II superstrings the conformally exact metric and dilaton are identical to those of the non-supersymmetric {\it semi-classical} bosonic model except for an overall renormalization of the metric obtained by k→k−gk\to k- g. (ii) The exact expressions for the heterotic superstring are derived from their exact bosonic string counterparts by shifting the central extension k→2k−hk\to 2k-h (but an overall factor (k−g)(k-g) remains unshifted). (iii) The combination eΩ−Ge^\Phi\sqrt{-G} is independent of kk and therefore can be computed in lowest order perturbation theory as required by the correct formulation of a conformally invariant path integral measure. The general formalism is applied to the coset models SO(d−1,2)−k/SO(d−1,1)−kSO(d-1,2)_{-k}/SO(d-1,1)_{-k} that are relevant for string theory on curved spacetime. Explicit expressions for the conformally exact metric and dilaton for the cases d=2,3,4d=2,3,4 are given. In the semiclassical limit (k→∞)(k\to \infty) our results agree with those obtained with the Lagrangian method up to 1-loop in perturbation theory.Comment: USC-92/HEP-B2, 19 pages and 3 figure
    • 

    corecore